Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257414

RESUMO

This paper presents a comprehensive assessment of the performance of on-chip circularly polarized (CP) circular loop antennas that have been designed and fabricated to operate in the Q/V frequency band. The proposed antenna design incorporates two concentric loops, with the outer loop as the active element and the inner loop enhancing the CP bandwidth. The study utilizes gallium arsenide (GaAs) and silicon carbide (4H-SiC) semiconductor wafer substrates. The measured results highlight the successful achievement of impedance matching at 40 GHz and 44 GHz for the 4H-SiC and GaAs substrates, respectively. Furthermore, both cases yield an axial ratio (AR) of less than 3 dB, with variations in bandwidths and frequency bands contingent upon the dielectric constant of the respective substrate material. Moreover, the outcomes confirm that utilizing 4H-SiC substrates results in a significantly higher radiation efficiency of 95%, owing to lower substrate losses. In pursuit of these findings, a 4-element circularly polarized loop array antenna has been fabricated for operation at 40 GHz, employing a 4H-SiC wafer as a low-loss substrate. The results underscore the antenna's remarkable performance, exemplified by a broadside gain of approximately 9.7 dBic and a total efficiency of circa 92%. A close agreement has been achieved between simulated and measured results.

2.
Sensors (Basel) ; 19(17)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480415

RESUMO

Three microwave sensors are used to track the glucose level of different human blood plasma solutions. In this paper, the sensors are evaluated as glucose trackers in a context close to real human blood. Different plasma solutions sets were prepared from a human blood sample at several added glucose concentrations up to 10 wt%, adding also ascorbic acid and lactic acid at different concentrations. The experimental results for the different sensors/solutions combinations are presented in this work. The sensors show good performance and linearity as glucose level retrievers, although the sensitivities change as the rest of components vary. Different sensor behaviors depending upon the concentrations of glucose and other components are identified and characterized. The results obtained in terms of sensitivity are coherent with previous works, highlighting the contribution of glucose to the dielectric losses of the solution. The results are also consistent with the frequency evolution of the electromagnetic signature of glucose found in the literature, and are helpful for selecting frequency bands for sensing purposes and envisioning future approaches to the challenging measurement in real biological contexts. Discussion of the implications of the results and guidelines for further research and development of more accurate sensors is offered.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Micro-Ondas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...